Short-Term Electric Load Forecasting for the Consecutive Holidays Using the Power Demand Variation Rate
نویسندگان
چکیده
منابع مشابه
Short-Term Load Forecasting for Electric Power Systems Using the PSO-SVR and FCM Clustering Techniques
This paper presents a new combined method for the short-term load forecasting of electric power systems based on the Fuzzy c-means (FCM) clustering, particle swarm optimization (PSO) and support vector regression (SVR) techniques. The training samples used in this method are of the same data type as the learning samples in the forecasting process and selected by a fuzzy clustering technique acc...
متن کاملShort-Term Electric Load Forecasting Using Multiple Gaussian Process Models
This paper presents a Gaussian process model-based short-term electric load forecasting. The Gaussian process model is a nonparametric model and the output of the model has Gaussian distribution with mean and variance. The multiple Gaussian process models as every hour ahead predictors are used to forecast future electric load demands up to 24 hours ahead in accordance with the direct forecasti...
متن کاملShort-term and Medium-term Gas Demand Load Forecasting by Neural Networks
The ability of Artificial Neural Network (ANN) for estimating the natural gas demand load for the next day and month of the populated cities has shown to be a real concern. As the most applicable network, the ANN with multi-layer back propagation perceptrons is used to approximate functions. Throughout the current work, the daily effective temperature is determined, and then the weather data w...
متن کاملForecasting Demand for Electric Power
We are developing a forecaster for daily extremes of demand for electric power encountered in the service area of a large midwestern utility and using this application as a testbed for approaches to input dimension reduction and decomposition of network training. Projection pursuit regression representations and the ability of algorithms like SIR to quickly find reasonable weighting vectors ena...
متن کاملEfficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks
Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
سال: 2013
ISSN: 1229-4691
DOI: 10.5207/jieie.2013.27.6.017